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LETTER TO THE EDITOR

Calculation of the properties of some metals and alloys
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Department of Materials Development, Japan Atomic Energy Research Institute, 1233 Watanuki,
Takasaki, Gunma 370-1209, Japan

Received 2 June 1998

Abstract. A simple empirical potential is employed to describe the atomic interactions in face-
centred cubic (FCC) metals and alloys. Using this model, the finite-temperature properties of
some FCC metals and alloys, i.e. Ag, Cu and Ag–Cu disordered alloys have been calculated
via a free energy minimization approach under the quasiharmonic approximation (QA). The
calculation yields excellent agreement with the experimental results.

For years the determination and calculation of thermodynamic functions for alloys have
been the subject of active research [1–6]. Among the approaches developed so far, the
calculation of phase diagram (CALPHAD) method [1–3] is a well established and widely
applied technique. In this approach, thermodynamic functions are derived by fitting the
equilibrium phase diagram, which in turn reproduce correctly the thermodynamic data for
the equilibrium alloys. They are, not surprisingly, prone to large errors when applied to
metastablealloys by extrapolation [7]. In order to apply this approach to metastable alloys,
acquisition of thermodynamic data for the metastable alloys is necessary. However, it
sometimes requires detailed and very complex experimental procedures. Another often-
employed method is a simple approach developed by López, Alonso and Gallego [8] from
Miedema’s model of the heat of formation [6]. Although it has been proved successful in
some binary and ternary systems, since most of the thermodynamic data produced by this
scheme are unrelated to temperature, it often disagrees with experimental data. Caution is
thus suggested when using this approach. In addition, neither method is capable of predicting
the properties of metals and alloys, since they do not reveal the relationship between the
energy and the atomic coordinates. New and physical methodologies are therefore desirable
for both equilibrium and metastable alloys.

In this letter, we first introduce a simple empirical potential and demonstrate its validity
in describing the atomic interactions in FCC metals and alloys. We then use this potential
to calculate the properties of Ag, Cu and Ag–Cu disordered alloys, and compare the results
with the experimental data.

A short-range potential similar to that proposed by Rosatoet al [9] is adopted in the
present work to describe the atomic interaction in the FCC metals and alloys, where the
cohesive energy is given by:

Ec =
∑
i

− (ρi)f +
∑
i,j

A2
ij exp

[−2pij
(
(rij /r0)− 1

)]
/rij . (1)

Here,rij is the distance between atomsi and j , r0 is the nearest-neighbour distance,f is
a factor to avoid the Cauchy discrepancy ofC12 = C44 and is normally taken as12. The
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electron gas densityρi is given by

ρi =
∑
j

ξ2
ij exp

[−2qij
(
(rij /r0)− 1

)]
.

The four constantsAij , ξij , pij andqij are determined by fitting the available experimental
data [9]. To check its validity in describing the atomic interactions, the cohesive energies of
copper with FCC and BCC structures, respectively, are calculated and are shown in figure 1.
The calculation confirms that FCC is the more stable form of Cu at ambient pressures, and
predicts the existence of metastable BCC Cu with a lattice constant of 2.87Å. BCC Cu is
indeed observed in experiments [10, 11]. The predicted lattice constant of 2.87Å is also in
excellent agreement with the experimental results [10, 11] and predictions by first-principles
calculations [12, 13].

Figure 1. Cohesive energies of FCC and BCC structured Cu predicted using the empirical
potential. A metastable BCC Cu form is predicted at arounda = 2.87 Å.

In order to calculate the finite-temperature properties, the free energy of a metal/alloy
is written as a function of the lattice volume and the temperature using the quasiharmonic
approximation [14]:

F(ν, T ) = Ec(ν)+ kBT
∫ ωmax

0
ln
[
2 sinh

(
h̄ω/kBT

)]
ρ(ω) dω + kBT1S. (2)

In the above equation, ¯h is Planck’s constant,kB is Boltzmann’s constant,Ec(ν) is the
cohesive energy and1S is the configurational entropy due to the partition of alien atoms in
the lattice. To precisely calculate the properties, the frequency spectrumρ(ω) is obtained
by accumulating the vibration modes in the irreducible part of the first Brillouin zone. In
the calculations, the equilibrium atomic coordinates are first achieved through minimizing
the free energy at finite temperatures, and then the properties of interest are evaluated
accordingly.

The enthalpy and entropy of Cu at temperatures up to the melting point have been
calculated by the above free energy minimization method and are listed in table 1. The
experimental data [15] are also listed for comparison. The precision of the quasiharmonic
(QA) in this calculation is remarkably good. The agreement between theory and experiment
holds not only at low temperatures where atomic motions are quite small (and likely
harmonic), but also at temperatures close to the melting point where inharmonic treatments
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are necessary. In a temperature range of 298.15–1300 K, the error between the calculation
and experiment is no more than 6%. Figure 2 depicts the calculated isothermal bulk modulus
of Ag and Cu; available low-temperature experimental data [16] are shown for comparison
(circles). The present calculation correctly predicts the bulk modulus of both metals at low
temperatures, and clearly shows the decreasing trend in the bulk modulus with increasing
temperature. A rough estimate of the melting point (although the present approach is not
appropriate for liquids) is given by the temperature at which a dramatic increase in the lattice
volume is observed. The predictions are 1200 K for Ag and 1400 K for Cu, which are
comparable to the experimental results of 1234 K for Ag and 1357 K for Cu, respectively
[15]. Similarly, other properties such as the thermal expansion, the specific heat, the elastic
constants, etc, can be calculated.

Table 1. Calculated and experimentally measured enthalpy and entropy for Cu.

Enthalpy (kJ mol−1) Entropy (J mol−1 k−1)
Temperature Error Error
(K) Calculation Experiment (%) Calculation Experiment (%)

298.15 0.0000 0.0000 0.0 0.0000 0.0000 0.0
400 2.5559 2.5104 1.8 7.3307 7.2383 1.3
500 5.1159 5.0836 0.6 13.035 12.970 0.5
600 7.7952 7.7195 0.1 17.929 17.782 0.8
700 10.629 10.376 2.4 22.294 21.882 1.9
800 13.427 13.096 2.5 26.023 25.522 2.0
900 16.401 15.899 3.2 29.521 28.828 2.4

1000 19.300 18.786 2.7 32.565 31.840 2.3
1100 22.560 21.715 3.9 35.677 34.644 3.0
1200 25.386 24.665 2.9 38.144 37.238 2.4
1300 29.171 27.677 5.4 41.179 39.622 3.9

Figure 2. Calculated isothermal bulk modulus for Ag and Cu. The circles represent experimental
results.

An application of this approach is to predict the properties of new or metastable alloys,
which is of great significance in practice. To apply the approach to alloys, a mean-field
effective potential is, for simplicity, assumed to describe the atomic interactions in the
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alloys. Figure 3 depicts the room-temperature lattice constants of Ag–Cu disordered alloys
predicted by this approach. The experimental data for both equilibrium [17] and metastable
[18] Ag–Cu alloys are also shown for comparison. As a guide to the eye, the prediction of
the phenomenological Vegard’s law has been included as a dashed line. There is a positive
deviation of the experimental data from Vegard’s law, implying a positive heat of mixing
between Ag and Cu. One sees that the present calculation accurately predicts the lattice
constants for both equilibrium and metastable Ag–Cu alloys though it is based only on an
empirical potential and the QA. The internal energies stored in the Ag–Cu alloys were also
calculated by the above approach. They were indeed of positive sign and their values are
in good agreement with the experimental results [5, 19].

Figure 3. Room-temperature lattice parameters of the disordered Ag–Cu alloys determined by
the present approach. Squares and circles represent the experimental results. The inset is an
enlarged part for Cu-rich alloys.

In summary, a simple empirical potential is used to describe the atomic interactions in
FCC metals and alloys. It is suitable for predicting the thermal and elastic properties of new
alloys via a free energy minimization approach, which is of great significance in designing
alloys.

The author greatly appreciates help from Professor B Stritzker at Augsburg University,
Germany and Dr H Naramoto at JAERI, Takasaki, Japan.
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